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Reshuffling scale-free networks: From random to assortative
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To analyze the role of assortativity in networks we introduce an algorithm which produces assortative
mixing to a desired degree. This degree is governed by one paramefdranging this parameter one can
construct networks ranging from fully randafp=0) to totally assortativép=1). We apply the algorithm to a
Barabasi-Albert scale-free network and show that the degree of assortativity is an important parameter gov-
erning the geometrical and transport properties of networks. Thus, the average path length of the network
increases dramatically with the degree of assortativity. Moreover, the concentration dependences of the size of
the giant component in the node percolation problem for uncorrelated and assortative networks are strongly
different. The behavior of the clustering coefficient is also discussed.
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INTRODUCTION pose the intuitive condition that “nodes with similar degree
connect preferably.” We then investigate the correlations
Complex networks have recently attracted a burst of inwhich come out of our simple model. Thus, we present an
terest as an indispensable tool for a description of differenalgorithm, governed by only the paramepgicapable of gen-
complex systems. Thus, technological webs such as the Iigrating assortative correlations to a desired degree. In order
ternet and World Wide Web, as well as other natural ando study the effect of assortative mixing, we apply our algo-
social systems like intricate chemical reactions in the livingrithm to a Barabasi-Albert scale-free netwd6], the one
cell, the networks of scientific and movie actor collabora-leading to the degree distributid?(k) ~ k™3, and investigate
tions, and even human sexual contacts, have been succe#ise properties of the emerging networks in some detail. The
fully described through scale-free networks, networks withidea behind this work is to check what are the effects of
the degree distributioR(k) ~k™” [1,2]. The degree distribu- assortativity alone on the properties of the networks, which
tion P(K) is one of the essential measures used to capture trgay random in any other respect. We show, for example, that
structure of a network and gives the probability that a nodéghe assortative correlations change drastically their average
chosen at random is connected with exagtlgther vertices path length and strongly influence their percolation proper-
of the network. ties.
Recently, it was pointed out that the existence of degree
correlations among nodes is an important property of real
networks [3—-15. Thus, many social networks show that In what follows we treat undirected networks. Starting
nodes having many connections tend to be connected witfiom a given network, at each step two links of the network
other highly connected nod@4,6]. In the literature this char- are chosen at random, so that the four nodes, in general with
acteristic is usually denoted as assortativity or assortativdifferent degrees, connected through the links two by two are
mixing. On the other hand, technological and biological netconsidered. The step of our algorithm looks as follows. The
works often have the property that nodes with a high degreéur nodes are ordered with respect to their degrees. Then,
are preferably connected with ones with a low degree, avith probability p, the links are rewired in such a way that
property referred to as dissortativifg,7]. Such correlations one link connects the two nodes with the smaller degrees and
have an important influence on the topology of networksthe other connects the two nodes with the larger degrees;
and therefore they are essential for the description of spreadtherwise, the links are randomly rewirédlaslov-Sneppen
ing phenomena, like spreading of information or infections,algorithm[11]). In the case when one or both of these new
as well as for the robustness of networks against an interlinks already existed in the network, the step is discarded and
tional attack or random breakdown of their elementsa new pair of edges is selected. This restriction prevents the
[16-21. appearance of multiple edges connecting the same pair of
In order to assess the role of correlations, especially ofiodes. A repeated application of the rewiring step leads to an
assortative mixing, several authors have proposed procedurassortative version of the original network. Note that the al-
to build correlated network$3,23—25. The most general gorithm does not change the degree of nodes involved and
procedures are the ones proposed by Newrf@nand thus the overall degree distribution in the network. Changing
Boguria and Pastor-Satorrg5], who suggest two different the parametep, it is possible to construct networks with
ways to construct general correlated networks with predifferent degree of assortativity.
scribed correlations. Following the same goal, we however
adopt a different perspective in this paper. We propose a
simple algorithm producing assortative mixing, in which, in-  Let &; be the probability that a randomly selected edge of
stead of putting in correlations by hand, we only try to im- the network connects two nodes, one with dedgread an-
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other with degreg. The probabilitiest;; determine the cor- we can calculate the expected value fgr The process of
relations of the network. We say that a network is uncorretepeated applications of our algorithm corresponds to an er-
lated when godic Markov chain, and the stationary solution in the ther-
N modynamical limit is given by the condition
iP(@) jP()

E=(2-8)———":=&, 1
i =278y = A (X 2+ POy = Fan # 1y0)?
i.e., when the probability that a link is connected to a node = fin[(1 = p)(1 = 2X) + p(Xg -1 = F1j-1= F1n) + fin]
with a certain degree is independent from the degree of the (4)

attached node. Her@)=(j) denotes the first moment of the
degree distribution.

Assortativity means that highly connected nodes tend to 2_
be connectedyto each other W?th);i higher probability than in (1+PKin = f10)° =1 =p)f[1 = 2Ky + 1] (5)
an uncorrelated network. Moreover, the nodes with similar Using Eqs.(4) and(5) we can calculaté,. The solution
degrees tend to be connected with larger probability than imeads
the uncorrelated case, i.€; >¢&j; O i. The degree of assor-

for all >1. Forl=1 this condition reduces to

2
tativity of a network can thus be characterized by the quan- f o= Xin+ (Bn ~ By-y)? l<n
tity [3] " (A-p)2+pXnt Byt By
p Ei Eii ‘Ei &i @ with
T 1-p|? 1+p

P Bn= \/[pxln"'T] _pxin T -
which takes the value 0 when the network is uncorrelated
and the value 1 when the network is totally assortatiMate Applying the definition, Eq.(3), we obtain the correla-

that finite-size effects and the constraint that no vertices b&ons

connected by more than one edge boutdrom above by

the values lower than [22].) Eiy =T = fi o= figj + fiag 1 (6)
Now, starting from the algorithm generator, we can obtain Finally, note that Eq(6) reduces to the corresponding

a theoretical expression fek; as a function ob_. LetEj be | ncorrelated caséi’j whenp=0, and reduces to
the number of links in the network connecting two nodes,

one with degree and another with degreg so thaté& iP(i)

=E;;/L, whereL is the total number of links of the network. &j= @jw (7)
(Since undirected networks satisy;=E;;, the restrictioni

<] can be imposed without loss of generajityWe now  for the casgp=1.

define the variable

- SIMULATIONS RESULTS
F|n=22Ers, r<s, I<n. (3)

ol or Let us start this section with drawing a small network to

show how our algorithm works. The initial network is a

A careful analysis of the algorithm reveals that, every timegarabasi-Albert scale-free construction with oriz=200

the rewiring procedure is applief, either does not change nodes and_=400 links; see Fig. (k). To obtain other net-

or increases or decreases by unity. We can then calculate thgyrks with exactly the same degree distribution but different
probabilities that it changes—i.e., th&f,—~Fjn+1 or Fi,  degree of assortativity we apply the algorithm discussed.
—Fin—1. The effect of multiple edges can be disregardedrigyre 1 shows the changes in the network with varying
since they are rare in the thermodynamical limit. Taking intoparametep. In the figure we have placed the nodes in such
account all corresponding possibilities, we obtain for they way that nodes of degree 2 are shown in the left part of

probabilities of changes the following expressions: each panel, all nodes of degree 3 lie to the right of any node
_f )2 _ 2 of degree 2, all nodes of degree 4 lie to the right of any node
(Xin = fin)™+ POXin = F1n *+ Fa-0) of degree 3, etc. The nodes of the same degree are randomly
for Fj,—F,+1 and spread within the corresponding area of the figure to better
show the links.
finl(1 =P)(L = 2X) + p(Xy -1 = Fap-1 = Fan) + fin] The network of maximal accessible assortativity is shown
for Fj,— Fj,—1. Heref,,=F,,/L, andX,, is given by in Fig. 1(d). In this network almost all nodes with the same

. degree are linked only between themselves. Figu® 1
1 shows that all nodes with degrke 2 form separated clusters
= @E kP(K), I=<n. (a more careful analysis unveils that there are three “pearl
- necklace” clusters wittN=23, N=30, andN=48 nodes All
(Note thatX,, and f,, vanish when one of the indices is nodes withk=3 are linked between themselves except for
smaller than 1, the minimal tolerated degyeeUsing this, one, which is linked with a node of connectivikr 4. Note

Xln
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FIG. 2. The lower curve corresponds to the measured assorta-
tivity A of our simulations, whereas the upper curve corresponds to
the theory. We note that both curves coincide ##0.7. Above
this value the finite-size corrections get important, leading to the
measured value ol <1 for p—1.

that since there arBl;=41 nodes withk=3 in our network
their links cannot be redistributed within the set. If this were
possible, the overall number of links would be X43/2
=61.5, since each node bears 3 links and each of these links
is counted twice in the set. All nodes with degilee4 form
a single cluster, with two outgoing links, one to the cluster of
nodes withk=3 and one to a cluster of nodes of connectivity
k=5. In fact, the network is not a set of isolated clusters of
nodes with the same connectivity only because of restrictions
imposed by the given degree distribution. These restrictions
are also responsible for the fact that< 1 (for our network
the maximal assortativity il,,,,=0.62.

In this work we apply our algorithm only to the Barabasi-
Albert construction26] and just like in our example, with

double number of links than of nodés=2N. Thus, in the
rest of simulations we us&l=10° nodes andL=2x10°
links. We measuref;; as functions ofp and use them to
calculate the corresponding values 4f All simulation re-
sults are averaged over ten independent realizations of the
algorithm as applied to the original network.

Figure 2 shows the relation between the parametand
the coefficient of assortativityd. The lower curve corre-
sponds to the measured assortativity and the upper to our
theoretical prediction. Both curves coincide fot<<0.7.
However, whereas the theoretical curve reaches the value 1
for p—1, the measured assortativity increases until the
maximal value smaller than orjel — 0.913 is reached. This
was expected22] and is due to the finite-size effects men-
tioned above.

To assess the goodness of E§) we compare in Fig. 3
the theoretical values &, given by Eq.(6), with the simu-

FIG. 1. Scale-free networks for different degrees of assortativitjations. The points correspond to the simulations and the
(see text for details The nodes of the same degree are groupecturves are the corresponding theoretical results obtained
together; the degree is nondecreasing from left to right. The panel@ased on the actual degree distribution of a particular real-

show (a) A=0 (uncorrelated netwopk (b) .A4=0.26, (c) .A=0.43,

and(d) A=0.62(maximal assortativity

ization of the network discussed. We note that the agreement
is really excellent.
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FIG. 3. & as a function ok for different values of4. From FIG. 5. The average path lendtfis plotted as function ol for

bottom to top: A=0, A=0.221, A=0.443, andA=0.640. The  three values of the coefficient of assortativity From bottom to

points are the results of the simulations and the curves corresportgp: A=0, A=0.221, andA=0.443. Note the logarithmic scale.
to the theory.

t. the network. For our particular Barabasi-Albert network we

Average path lengthThe average path length of a ne 11z

work is the average distance between every pair of vertice1Us havel =(0.913-A4
of the network, being defined as the number of edges along Although assortative networks present large mean path
the shortest path connecting them. Uncorrelated scale-frdgngths, they are still small Worlds'—|..e., show the logarith-
networks show a very small path length, typically growing as™ic dependence dfon the network’s sizél. Figure 5 shows
the logarithm of the network’s sizesmall-world behaviox this behavior for three different values @f. The error bars
For networks withN = 10P it is aboutl = 6. The results of the result from averaging over ten realizations of the algorithm.
simulations show that the average path length grows rapidli}—h's small—wqud behawor is preser.ved .for all tested values
when the assortativity of the network increagggy. 4), so of A=0.6 (this maximal value ot4 is still larger than the

that it becomes two orders of magnitude larger than for th@nes found in real assortative networks, whgreanges“ be- i
uncorrelated network when the coefficient of assortativity™een 0 and 0.4 Thus, assortative networks are the “large

tend to its maximal value. In the inset of Fig. 4 we plot the Small worlds. _ _ _
average path length as a function &f-.A, where K Natural networks, like the different coauthorship networks

=0.913 corresponds to this maximal valuedfttainable in ~ (Physics, biology, mathematics, etcthe film actor collabo-
ration network, etc(all of them assortative networksseem
to show somewhat smaller average path lengths than the
ones found hergl,3]. We attribute this finding to the fact
that the mean degree of such networks is 2—4 times larger
than in our casd(k)=4). Therefore one has to be cautious
about comparing absolute numerical values.
Clustering coefficient Clustering coefficients of a net-
— 10t v’} work are a measure of thg number of Ionls)sed path)sc_)f
5o 5 ] J !ength 3. The notion has its roots in socml(_)gy, Wherg it was
102} ' Ko A Y 1 important to analyze the groups of acquaintances in which
' every member knows every other one. To discuss the concept
- of clustering, let us focus first on a vertex, havikgdges
< connected tdk other nodes termed as nearest neighbors. If
o these nearest neighbors of the selected node were forming a
10" P E fully connected cluster of vertices, there would ké&
— . . . —-1)/2 edges between them. The ratio between the number of
0 0.2 0.4 4 0.6 038 1 edges that really exist between thé&seertices and the maxi-
mal numberk(k—1)/2 gives the value of the clustering co-
FIG. 4. Average path lengthof the network versus coefficient €fficient of the selected node. The clustering coefficient of
of assortativity. We note thatgrows rapidly whenA increases. In  the whole networkC is then defined as the average of the
the inset the average path length is plotted on double-logarithmi€lustering coefficients of all vertices. One can also speak
scales as function ofC-.A, being £X=0.913. The slope of the about the clustering coefficient of nodes with a given degree
straight line is -1.12. k, referring to the average of the clustering coefficients only

10°

10°

10%F
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FIG. 6. C(k) as a function of the degree of nodes, Diff- ;4 o the fraction of nodes removed from the network. The graph

erent curves correspond to different values/fFrom bottom to 5 nares the results for different degrees of assortativity. From top

top: .A=0,.A=0.069,.4=0.221,.4=0.443, 4=0.640, A=0.777, (4 potiom: 4=0, 4=0.069, A=0.221, A=0.443, A=0.640, A

A=0.856, and maximal assortativitd=0.913. Inset: clustering =0.777,A=0.856, andA=0.913(maximal assortativity

coefficientC versus the degree of assortativity,

nodes have a smaller degree, only the Maslov-Sneppen step
over this type of nodes. We shall denote this degreeis used. This procedure could lead to a larger value for the
dependent clustering coefficient t(k), to distinguish it ~ clustering coefficient. _
from C. Node percolation Node percolation corresponds to the
Figure 6 shows the variation of both clustering coeffi- removal of a certain fraction of vertices from the network

cients with the assortativity of the network. The clustering2nd IS relevant when discussing their vulnerability to a ran-
coefficient C increases with the assortativiiynset of the dom attack. Letq be the fraction of nodes removed. At a

figure). However, typical values of the clusterin coefﬁcientscritical fraction g, the giant componertargest connected
9 )'. er, yp . 9 clustep breaks into isolated clusters. Figure 7 shows the frac-
found in our simulations are still much smaller than the one

. ) Yion of nodes, M, in the giant component as a function gf
observed in real network€=0.1) [1]. The last ones might, ¢, gifferent degrees of assortativity of the network. The four
however, have a much more intricate structure, partly govypper curves correspond to the values of assortativity found
erned by the metrics of the underlying space, as in the modn natural networks. We note that the behavior Jot(q)
els discussed in27]. Thus, care must be exercised whenchanges gradually with! from the uncorrelated cagapper
applying our results to natural networks. curve to a quite different behavior whept—1 (lower
The variation ofC(k) shows more interesting features. curve), which indicates a very different topology in the net-
The simulations show a peak arourkd:90 (probably a worll< when it is strongly assortative. However, although the
finite-size effect whose height increases with the assortativ-Particular form of theM dependence is different for differ-
ity of the network. In the uncorrelated ca@k) does not ent degrees of assortativity, the absence of the transition at
: . finite concentrationgg.=1) and the overall type of critical
depend ork [13], but a strong tendency to clusteririfpr

latively | K heot We al b behavior for correlated networks with the sag) seems
relatively largek) emerges wheod grows. We also observe to be the same as for uncorrelated networks—namely, the

in our simulations thaC(k=2)=0 whenA=1 (k=2 corre-  one discussed in Reff28,29. We thus see that this generic
sponds to the minimal degree of the verticeBhis is not  behavior in node percolation is only quantitavely affected by
surprising since in a strongly assortative case almost allesfuffling, lowering M at a given fraction of removed
nodes with degre&=2 are connected between themselvesnodes. This quantitative behavior, however, might depend on
forming one or several large loops of length larger than 3the network’s precise nature which fact has to borne in mind
This means that all nodes having this minimal dedgie®ur ~ when comparing our results with the ones for natural net-
simulations half of the total number of vertigedo not tend works. We also point out that in the casé=1, a finite
to contribute to the clustering coefficie@t network is no longer fully connected: part of the nodes does
In the present contribution we concentrate on an investinot belong to the giant component even @s%0. The results
gation of the properties of the proposed algorithm. Howeversuggest that, in the thermodynamical limit, the giant cluster
we suggest, in relation to real networks, a simple modificaat q— 0 contains around a half of all nodes and that its
tion of the algorithm that perhaps could be useful. Thus, irdensity then decays smoothly with
order to generate assortativity only among highly connected
vertices, one can apply the algorithm above only when at CONCLUSIONS
least one of the four nodes selected at the corresponding step In summary, we present an algorithm to generate assorta-
has a degree larger than some chokeRrovided all four tively correlated networks. In the thermodynamical limit we
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obtain a theoretical expression for the generated correlationedges so that one link connects the highest connected node
which only depend on the degree distribution of the networkwith the node with the lowest degree and the other link con-
and on the tunable paramefeof the algorithm. Finally, we nects the two remaining vertices; with probability g ene
show that assortative correlations have a drastic influence arwires the links randomly.
the statistical properties of networks, changing strikingly
their average path length and percolation properties, as well
as leading to an increase in their clustering coefficient. ACKNOWLEDGMENTS
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