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To analyze the role of assortativity in networks we introduce an algorithm which produces assortative
mixing to a desired degree. This degree is governed by one parameterp. Changing this parameter one can
construct networks ranging from fully randomsp=0d to totally assortativesp=1d. We apply the algorithm to a
Barabási-Albert scale-free network and show that the degree of assortativity is an important parameter gov-
erning the geometrical and transport properties of networks. Thus, the average path length of the network
increases dramatically with the degree of assortativity. Moreover, the concentration dependences of the size of
the giant component in the node percolation problem for uncorrelated and assortative networks are strongly
different. The behavior of the clustering coefficient is also discussed.
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INTRODUCTION

Complex networks have recently attracted a burst of in-
terest as an indispensable tool for a description of different
complex systems. Thus, technological webs such as the In-
ternet and World Wide Web, as well as other natural and
social systems like intricate chemical reactions in the living
cell, the networks of scientific and movie actor collabora-
tions, and even human sexual contacts, have been success-
fully described through scale-free networks, networks with
the degree distributionPskd,k−g [1,2]. The degree distribu-
tion Pskd is one of the essential measures used to capture the
structure of a network and gives the probability that a node
chosen at random is connected with exactlyk other vertices
of the network.

Recently, it was pointed out that the existence of degree
correlations among nodes is an important property of real
networks [3–15]. Thus, many social networks show that
nodes having many connections tend to be connected with
other highly connected nodes[4,6]. In the literature this char-
acteristic is usually denoted as assortativity or assortative
mixing. On the other hand, technological and biological net-
works often have the property that nodes with a high degree
are preferably connected with ones with a low degree, a
property referred to as dissortativity[3,7]. Such correlations
have an important influence on the topology of networks,
and therefore they are essential for the description of spread-
ing phenomena, like spreading of information or infections,
as well as for the robustness of networks against an inten-
tional attack or random breakdown of their elements
[16–21].

In order to assess the role of correlations, especially of
assortative mixing, several authors have proposed procedures
to build correlated networks[3,23–25]. The most general
procedures are the ones proposed by Newman[3] and
Boguñá and Pastor-Satorras[25], who suggest two different
ways to construct general correlated networks with pre-
scribed correlations. Following the same goal, we however
adopt a different perspective in this paper. We propose a
simple algorithm producing assortative mixing, in which, in-
stead of putting in correlations by hand, we only try to im-

pose the intuitive condition that “nodes with similar degree
connect preferably.” We then investigate the correlations
which come out of our simple model. Thus, we present an
algorithm, governed by only the parameterp, capable of gen-
erating assortative correlations to a desired degree. In order
to study the effect of assortative mixing, we apply our algo-
rithm to a Barabási-Albert scale-free network[26], the one
leading to the degree distributionPskd,k−3, and investigate
the properties of the emerging networks in some detail. The
idea behind this work is to check what are the effects of
assortativity alone on the properties of the networks, which
stay random in any other respect. We show, for example, that
the assortative correlations change drastically their average
path length and strongly influence their percolation proper-
ties.

ALGORITHM

In what follows we treat undirected networks. Starting
from a given network, at each step two links of the network
are chosen at random, so that the four nodes, in general with
different degrees, connected through the links two by two are
considered. The step of our algorithm looks as follows. The
four nodes are ordered with respect to their degrees. Then,
with probability p, the links are rewired in such a way that
one link connects the two nodes with the smaller degrees and
the other connects the two nodes with the larger degrees;
otherwise, the links are randomly rewired(Maslov-Sneppen
algorithm [11]). In the case when one or both of these new
links already existed in the network, the step is discarded and
a new pair of edges is selected. This restriction prevents the
appearance of multiple edges connecting the same pair of
nodes. A repeated application of the rewiring step leads to an
assortative version of the original network. Note that the al-
gorithm does not change the degree of nodes involved and
thus the overall degree distribution in the network. Changing
the parameterp, it is possible to construct networks with
different degree of assortativity.

CORRELATIONS AND ASSORTATIVITY

Let Ei j be the probability that a randomly selected edge of
the network connects two nodes, one with degreei and an-
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other with degreej . The probabilitiesEi j determine the cor-
relations of the network. We say that a network is uncorre-
lated when

Ei j = s2 − di jd
iPsid
kil

jPs jd
k jl

ª Ei j
r , s1d

i.e., when the probability that a link is connected to a node
with a certain degree is independent from the degree of the
attached node. Herekil=k jl denotes the first moment of the
degree distribution.

Assortativity means that highly connected nodes tend to
be connected to each other with a higher probability than in
an uncorrelated network. Moreover, the nodes with similar
degrees tend to be connected with larger probability than in
the uncorrelated case, i.e.,Eii .Eii

r ∀ i. The degree of assor-
tativity of a network can thus be characterized by the quan-
tity [3]

A =
oi

Eii − oi
Eii

r

1 − oi
Eii

r
, s2d

which takes the value 0 when the network is uncorrelated
and the value 1 when the network is totally assortative.(Note
that finite-size effects and the constraint that no vertices be
connected by more than one edge boundA from above by
the values lower than 1[22].)

Now, starting from the algorithm generator, we can obtain
a theoretical expression forEi j as a function ofp. Let Eij be
the number of links in the network connecting two nodes,
one with degreei and another with degreej , so thatEi j
=Eij /L, whereL is the total number of links of the network.
(Since undirected networks satisfyEij =Eji , the restrictioni
ø j can be imposed without loss of generality.) We now
define the variable

Fln = o
r=l

n

o
s=r

n

Ers, r ø s, l ø n. s3d

A careful analysis of the algorithm reveals that, every time
the rewiring procedure is applied,Fln either does not change
or increases or decreases by unity. We can then calculate the
probabilities that it changes—i.e., thatFln→Fln+1 or Fln
→Fln−1. The effect of multiple edges can be disregarded
since they are rare in the thermodynamical limit. Taking into
account all corresponding possibilities, we obtain for the
probabilities of changes the following expressions:

sXln − f lnd2 + psXln − f1n + f1,l−1d2

for Fln→Fln+1 and

f lnfs1 − pds1 − 2Xlnd + psX1,l−1 − f1,l−1 − f1nd + f lng

for Fln→Fln−1. Heref ln=Fln /L, andXln is given by

Xln =
1

kklok=l

n

kPskd, l ø n.

(Note that Xln and f ln vanish when one of the indices is
smaller than 1, the minimal tolerated degree.) Using this,

we can calculate the expected value forf ln. The process of
repeated applications of our algorithm corresponds to an er-
godic Markov chain, and the stationary solution in the ther-
modynamical limit is given by the condition

sXln − f lnd2 + psXln − f1n + f1,l−1d2

= f lnfs1 − pds1 − 2Xlnd + psX1,l−1 − f1,l−1 − f1nd + f lng
s4d

for all l .1. For l =1 this condition reduces to

s1 + pdsX1n − f1nd2 = s1 − pdf1nf1 − 2X1n + f1ng. s5d

Using Eqs.(4) and (5) we can calculatef ln. The solution
reads

f ln =
Xln

2 + sBn − Bn−1d2

s1 − pd/2 + pXln + Bn + Bn−1
, l ø n,

with

Bn =ÎFpX1n +
1 − p

4
G2

− pX1n
2 S1 + p

2
D .

Applying the definition, Eq.(3), we obtain the correla-
tions

Ei j = f ij − f i,j−1 − f i+1,j + f i+1,j−1. s6d

Finally, note that Eq.(6) reduces to the corresponding
uncorrelated caseEi j

r whenp=0, and reduces to

Ei j = di j
iPsid
kil

s7d

for the casep=1.

SIMULATIONS RESULTS

Let us start this section with drawing a small network to
show how our algorithm works. The initial network is a
Barabási-Albert scale-free construction with onlyN=200
nodes andL=400 links; see Fig. 1(a). To obtain other net-
works with exactly the same degree distribution but different
degree of assortativity we apply the algorithm discussed.
Figure 1 shows the changes in the network with varying
parameterp. In the figure we have placed the nodes in such
a way that nodes of degree 2 are shown in the left part of
each panel, all nodes of degree 3 lie to the right of any node
of degree 2, all nodes of degree 4 lie to the right of any node
of degree 3, etc. The nodes of the same degree are randomly
spread within the corresponding area of the figure to better
show the links.

The network of maximal accessible assortativity is shown
in Fig. 1(d). In this network almost all nodes with the same
degree are linked only between themselves. Figure 1(d)
shows that all nodes with degreek=2 form separated clusters
(a more careful analysis unveils that there are three “pearl
necklace” clusters withN=23, N=30, andN=48 nodes). All
nodes withk=3 are linked between themselves except for
one, which is linked with a node of connectivityk=4. Note

R. XULVI-BRUNET AND I. M. SOKOLOV PHYSICAL REVIEW E 70, 066102(2004)

066102-2



that since there areN3=41 nodes withk=3 in our network
their links cannot be redistributed within the set. If this were
possible, the overall number of links would be 4133/2
=61.5, since each node bears 3 links and each of these links
is counted twice in the set. All nodes with degreek=4 form
a single cluster, with two outgoing links, one to the cluster of
nodes withk=3 and one to a cluster of nodes of connectivity
k=5. In fact, the network is not a set of isolated clusters of
nodes with the same connectivity only because of restrictions
imposed by the given degree distribution. These restrictions
are also responsible for the fact thatA,1 (for our network
the maximal assortativity isAmax=0.62).

In this work we apply our algorithm only to the Barabási-
Albert construction[26] and just like in our example, with

double number of links than of nodesL=2Ṅ. Thus, in the
rest of simulations we useN=105 nodes andL=23105

links. We measureEi j as functions ofp and use them to
calculate the corresponding values ofA. All simulation re-
sults are averaged over ten independent realizations of the
algorithm as applied to the original network.

Figure 2 shows the relation between the parameterp and
the coefficient of assortativityA. The lower curve corre-
sponds to the measured assortativity and the upper to our
theoretical prediction. Both curves coincide forA,0.7.
However, whereas the theoretical curve reaches the value 1
for p→1, the measured assortativity increases until the
maximal value smaller than onesA→0.913d is reached. This
was expected[22] and is due to the finite-size effects men-
tioned above.

To assess the goodness of Eq.(6) we compare in Fig. 3
the theoretical values ofEkk, given by Eq.(6), with the simu-
lations. The points correspond to the simulations and the
curves are the corresponding theoretical results obtained
based on the actual degree distribution of a particular real-
ization of the network discussed. We note that the agreement
is really excellent.

FIG. 1. Scale-free networks for different degrees of assortativity
(see text for details). The nodes of the same degree are grouped
together; the degree is nondecreasing from left to right. The panels
show (a) A=0 (uncorrelated network), (b) A=0.26, (c) A=0.43,
and (d) A=0.62 (maximal assortativity).

FIG. 2. The lower curve corresponds to the measured assorta-
tivity A of our simulations, whereas the upper curve corresponds to
the theory. We note that both curves coincide forA,0.7. Above
this value the finite-size corrections get important, leading to the
measured value ofA,1 for p→1.
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Average path length. The average path length of a net-
work is the average distance between every pair of vertices
of the network, being defined as the number of edges along
the shortest path connecting them. Uncorrelated scale-free
networks show a very small path length, typically growing as
the logarithm of the network’s size(small-world behavior).
For networks withN.105 it is aboutl .6. The results of the
simulations show that the average path length grows rapidly
when the assortativity of the network increases(Fig. 4), so
that it becomes two orders of magnitude larger than for the
uncorrelated network when the coefficient of assortativity
tend to its maximal value. In the inset of Fig. 4 we plot the
average path length as a function ofK−A, where K
=0.913 corresponds to this maximal value ofA attainable in

the network. For our particular Barabási-Albert network we
thus havel ~ s0.913−Ad−1.12.

Although assortative networks present large mean path
lengths, they are still small worlds—i.e., show the logarith-
mic dependence ofl on the network’s sizeN. Figure 5 shows
this behavior for three different values ofA. The error bars
result from averaging over ten realizations of the algorithm.
This small-world behavior is preserved for all tested values
of Aø0.6 (this maximal value ofA is still larger than the
ones found in real assortative networks, whereA ranges be-
tween 0 and 0.4). Thus, assortative networks are the “large”
small worlds.

Natural networks, like the different coauthorship networks
(physics, biology, mathematics, etc.), the film actor collabo-
ration network, etc.(all of them assortative networks), seem
to show somewhat smaller average path lengths than the
ones found here[1,3]. We attribute this finding to the fact
that the mean degree of such networks is 2–4 times larger
than in our caseskkl=4d. Therefore one has to be cautious
about comparing absolute numerical values.

Clustering coefficient. Clustering coefficients of a net-
work are a measure of the number of loops(closed paths) of
length 3. The notion has its roots in sociology, where it was
important to analyze the groups of acquaintances in which
every member knows every other one. To discuss the concept
of clustering, let us focus first on a vertex, havingk edges
connected tok other nodes termed as nearest neighbors. If
these nearest neighbors of the selected node were forming a
fully connected cluster of vertices, there would beksk
−1d /2 edges between them. The ratio between the number of
edges that really exist between thesek vertices and the maxi-
mal numberksk−1d /2 gives the value of the clustering co-
efficient of the selected node. The clustering coefficient of
the whole networkC is then defined as the average of the
clustering coefficients of all vertices. One can also speak
about the clustering coefficient of nodes with a given degree
k, referring to the average of the clustering coefficients only

FIG. 3. Ekk as a function ofk for different values ofA. From
bottom to top: A=0, A=0.221, A=0.443, andA=0.640. The
points are the results of the simulations and the curves correspond
to the theory.

FIG. 4. Average path lengthl of the network versus coefficient
of assortativity. We note thatl grows rapidly whenA increases. In
the inset the average path length is plotted on double-logarithmic
scales as function ofK−A, being K=0.913. The slope of the
straight line is −1.12.

FIG. 5. The average path lengthl is plotted as function ofN for
three values of the coefficient of assortativityA. From bottom to
top: A=0, A=0.221, andA=0.443. Note the logarithmic scale.

R. XULVI-BRUNET AND I. M. SOKOLOV PHYSICAL REVIEW E 70, 066102(2004)

066102-4



over this type of nodes. We shall denote this degree-

dependent clustering coefficient byC̄skd, to distinguish it
from C.

Figure 6 shows the variation of both clustering coeffi-
cients with the assortativity of the network. The clustering
coefficient C increases with the assortativity(inset of the
figure). However, typical values of the clustering coefficients
found in our simulations are still much smaller than the ones
observed in real networkssCù0.1d [1]. The last ones might,
however, have a much more intricate structure, partly gov-
erned by the metrics of the underlying space, as in the mod-
els discussed in[27]. Thus, care must be exercised when
applying our results to natural networks.

The variation ofC̄skd shows more interesting features.
The simulations show a peak aroundk=90 (probably a
finite-size effect) whose height increases with the assortativ-

ity of the network. In the uncorrelated caseC̄skd does not
depend onk [13], but a strong tendency to clustering(for
relatively largek) emerges whenA grows. We also observe

in our simulations thatC̄sk=2d=0 whenA.1 (k=2 corre-
sponds to the minimal degree of the vertices). This is not
surprising since in a strongly assortative case almost all
nodes with degreek=2 are connected between themselves,
forming one or several large loops of length larger than 3.
This means that all nodes having this minimal degree(in our
simulations half of the total number of vertices) do not tend
to contribute to the clustering coefficientC.

In the present contribution we concentrate on an investi-
gation of the properties of the proposed algorithm. However,
we suggest, in relation to real networks, a simple modifica-
tion of the algorithm that perhaps could be useful. Thus, in
order to generate assortativity only among highly connected
vertices, one can apply the algorithm above only when at
least one of the four nodes selected at the corresponding step
has a degree larger than some chosenk. Provided all four

nodes have a smaller degree, only the Maslov-Sneppen step
is used. This procedure could lead to a larger value for the
clustering coefficient.

Node percolation. Node percolation corresponds to the
removal of a certain fraction of vertices from the network
and is relevant when discussing their vulnerability to a ran-
dom attack. Letq be the fraction of nodes removed. At a
critical fraction qc, the giant component(largest connected
cluster) breaks into isolated clusters. Figure 7 shows the frac-
tion of nodes,M, in the giant component as a function ofq
for different degrees of assortativity of the network. The four
upper curves correspond to the values of assortativity found
in natural networks. We note that the behavior ofMsqd
changes gradually withA from the uncorrelated case(upper
curve) to a quite different behavior whenA→1 (lower
curve), which indicates a very different topology in the net-
work when it is strongly assortative. However, although the
particular form of theM dependence is different for differ-
ent degrees of assortativity, the absence of the transition at
finite concentrationssqc=1d and the overall type of critical
behavior for correlated networks with the samePskd seems
to be the same as for uncorrelated networks—namely, the
one discussed in Refs.[28,29]. We thus see that this generic
behavior in node percolation is only quantitavely affected by
resfuffling, lowering M at a given fraction of removed
nodes. This quantitative behavior, however, might depend on
the network’s precise nature which fact has to borne in mind
when comparing our results with the ones for natural net-
works. We also point out that in the caseA.1, a finite
network is no longer fully connected: part of the nodes does
not belong to the giant component even forq=0. The results
suggest that, in the thermodynamical limit, the giant cluster
at q→0 contains around a half of all nodes and that its
density then decays smoothly withq.

CONCLUSIONS

In summary, we present an algorithm to generate assorta-
tively correlated networks. In the thermodynamical limit we

FIG. 6. C̄skd as a function of the degree of nodes,k. Diff-
erent curves correspond to different values ofA. From bottom to
top: A=0, A=0.069,A=0.221,A=0.443,A=0.640,A=0.777,
A=0.856, and maximal assortativityA=0.913. Inset: clustering
coefficientC versus the degree of assortativity,A.

FIG. 7. Fraction of nodes,M, in the giant component depend-
ing on the fraction of nodes removed from the network. The graph
compares the results for different degrees of assortativity. From top
to bottom: A=0, A=0.069, A=0.221, A=0.443, A=0.640, A
=0.777,A=0.856, andA=0.913(maximal assortativity).
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obtain a theoretical expression for the generated correlations,
which only depend on the degree distribution of the network
and on the tunable parameterp of the algorithm. Finally, we
show that assortative correlations have a drastic influence on
the statistical properties of networks, changing strikingly
their average path length and percolation properties, as well
as leading to an increase in their clustering coefficient.

We also indicate that with a minor change in our algo-
rithm one can produce dissortative mixing too. The only
change would be the following: after ordering the nodes with
respect to their degree, one rewires, with probabilityp, the

edges so that one link connects the highest connected node
with the node with the lowest degree and the other link con-
nects the two remaining vertices; with probability 1−p one
rewires the links randomly.
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